Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611201

RESUMO

In order to develop flexible thermoelectric materials with thermoelectric and mechanical properties, in this study, we designed and synthesized polythiophene derivatives with branched ethylene glycol polar side-chains named P3MBTEMT, which were used in combination with single-walled carbon nanotubes (SWCNTs) to prepare composite thin films and flexible thermoelectric devices. A comparison was made with a polymer named P3(TEG)T, which has a polar alkoxy linear chain. The UV-vis results indicated that the larger steric hindrances of the branched ethylene glycol side-chain in P3MBTEMT could inhibit its self-aggregation and had a stronger interaction with the SWCNTs compared to that of P3(TEG)T, which was also confirmed using Raman spectroscopy. When the mass ratio of SWCNTs to P3MBTEMT was 9:1 (represented as P3MBTEMT/SWCNTs-0.9), the composite film exhibited the highest thermoelectric properties with a power factor of 446.98 µW m-1 K-2, which was more than two times higher than that of P3(TEG)T/SWCNTs-0.9 (215.08 µW m-1 K-2). The output power of the thermoelectric device with P3MBTEMT/SWCNTs-0.9 was 2483.92 nW at 50 K, which was 1.66 times higher than that of P3(TEG)T/SWCNTs-0.9 (1492.65 nW). Furthermore, the P3MBTEMT/SWCNTs-0.5 showed superior mechanical properties compared to P3(TEG)T/SWCNTs-0.5. These results indicated that the mechanical and thermoelectric performances of polymer/SWCNT composites could be significantly improved by adding polar branched side-chains to conjugated polymers. This study provided a new strategy for creating high-performing novel flexible thermoelectric materials.

2.
PLoS One ; 19(4): e0297945, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625904

RESUMO

The Brown planthopper (Nilaparvata lugens Stål; BPH) is known to cause significant damage to rice crops in Asia, and the use of host-resistant varieties is an effective and environmentally friendly approach for controlling BPH. However, genes limited resistance genes that are used in insect-resistant rice breeding programs, and landrace rice varieties are materials resources that carry rich and versatile genes for BPH resistance. Two landrace indica rice accessions, CL45 and CL48, are highly resistant to BPH and show obvious antibiosis against BPH. A novel resistance locus linked to markers 12M16.983 and 12M19.042 was identified, mapped to chromosome 12 in CL45, and designated Bph46. It was finely mapped to an interval of 480 kb and Gene 3 may be the resistance gene. Another resistance locus linked to markers RM26567 and 11MA104 was identified and mapped to chromosome 11 in CL48 and designated qBph11.3 according to the nominating rule. It was finely mapped to an interval of 145 kb, and LOC_Os11g29090 and LOC_Os11g29110 may be the resistance genes. Moreover, two markers, 12M16.983 and 11MA104, were developed for CL45 and CL48, respectively, using marker-assisted selection (MAS) and were confirmed by backcrossing individuals and phenotypic detection. Interestingly, we found that the black glume color is closely linked to the BPH resistance gene in CL48 and can effectively assist in the identification of positive individuals for breeding. Finally, several near-isogenic lines with a 9311 or KW genetic background, as well as pyramid lines with two resistance parents, were developed using MAS and exhibited significantly high resistance against BPHs.


Assuntos
Hemípteros , Oryza , Humanos , Animais , Mapeamento Cromossômico , Locos de Características Quantitativas , Oryza/genética , Genes de Plantas , Doenças das Plantas/genética , Cruzamentos Genéticos , Melhoramento Vegetal , Hemípteros/genética
3.
Anal Chim Acta ; 1303: 342512, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609275

RESUMO

BACKGROUND: Various surface-enhanced Raman spectroscopy (SERS) substrate preparation methods have been reported, however, how to tune the "gap" between nanostructures to make more "hot spots" is still a barrier that restricts their application. The gap between nanostructures is usually fixed when the substrates are prepared. In other words, it is hard to tune interparticle distances for maximum electromagnetic coupling during substrate preparation process. Therefore, an in-situ substrate optimization method that could monitor the SERS signal intensity changes, i.e., to find the optimum gap width and particle size, during substrate preparation process is needed. RESULTS: A method based on the galvanic replacement reaction (GRR) is proposed for the in-situ gap width tuning between nanostructures as well as for the optimization of SERS substrates. Noble metal nanoparticles (NPs) form and grow on the sacrificial templates' surface while noble metal ions are reduced by sacrificial metal (oxides) in GRR. Along with the fresh and clean NPs' surface generated, the gap between two noble metal NPs decreases with the growth of the NPs. To demonstrate this strategy, cuprous oxide/Ti (Cu2O/Ti) sacrificial templates were prepared, and then a GRR was carried out with HAuCl4. The real-time SERS detection during GRR show that the optimum reaction time (ORT) is 300 ± 30 s. Furthermore, SERS performance testing was conducted on the optimized substrate, revealing that the detection limit for crystal violet can reach 1.96 × 10-11 M, confirming the feasibility of this method. SIGNIFICANCE AND NOVELTY: By monitoring the in-situ SERS signal of probes during GRR will obtain an "optimal state" of the SERS substrate with optimal gap width and particle size. The SERS substrate preparation and optimization strategy proposed in this article not only provides a simple, efficient, and low-cost method to fabricate surface-clean noble NPs but also paves the way for the in-situ optimization of NPs size and gap width between NPs which could achieve wider applications of SERS.

4.
Angew Chem Int Ed Engl ; 63(5): e202316112, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38088222

RESUMO

Compensating the irreversible loss of limited active lithium (Li) is essentially important for improving the energy-density and cycle-life of practical Li-ion battery full-cell, especially after employing high-capacity but low initial coulombic efficiency anode candidates. Introducing prelithiation agent can provide additional Li source for such compensation. Herein, we precisely implant trace Co (extracted from transition metal oxide) into the Li site of Li2 O, obtaining (Li0.66 Co0.11 □0.23 )2 O (CLO) cathode prelithiation agent. The synergistic formation of Li vacancies and Co-derived catalysis efficiently enhance the inherent conductivity and weaken the Li-O interaction of Li2 O, which facilitates its anionic oxidation to peroxo/superoxo species and gaseous O2 , achieving 1642.7 mAh/g~Li2O prelithiation capacity (≈980 mAh/g for prelithiation agent). Coupled 6.5 wt % CLO-based prelithiation agent with LiCoO2 cathode, substantial additional Li source stored within CLO is efficiently released to compensate the Li consumption on the SiO/C anode, achieving 270 Wh/kg pouch-type full-cell with 92 % capacity retention after 1000 cycles.

5.
Adv Mater ; 36(13): e2312159, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38117030

RESUMO

Developing sacrificial cathode prelithiation technology to compensate for active lithium loss is vital for improving the energy density of lithium-ion battery full-cells. Li2CO3 owns high theoretical specific capacity, superior air stability, but poor conductivity as an insulator, acting as a promising but challenging prelithiation agent candidate. Herein, extracting a trace amount of Co from LiCoO2 (LCO), a lattice engineering is developed through substituting Li sites with Co and inducing Li defects to obtain a composite structure consisting of (Li0.906Co0.043▫0.051)2CO2.934 and ball milled LiCoO2 (Co-Li2CO3@LCO). Notably, both the bandgap and Li─O bond strength have essentially declined in this structure. Benefiting from the synergistic effect of Li defects and bulk phase catalytic regulation of Co, the potential of Li2CO3 deep decomposition significantly decreases from typical >4.7 to ≈4.25 V versus Li/Li+, presenting >600 mAh g-1 compensation capacity. Impressively, coupling 5 wt% Co-Li2CO3@LCO within NCM-811 cathode, 235 Wh kg-1 pouch-type full-cell is achieved, performing 88% capacity retention after 1000 cycles.

6.
Water Res ; 245: 120596, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37717331

RESUMO

Electrocatalytic oxidation is commonly restricted by low degradation efficiency, slow mass transfer, and high energy consumption. Herein, a synergetic electrocatalysis system was developed for removal of various drugs, i.e., atenolol, florfenicol, and diclofenac sodium, as well as actual pharmaceutical wastewater, where the newly-designed single-atom Zr embedded Ti4O7 (Zr/Ti4O7) and hierarchical CuFe2O4 (CFO) microspheres were used as anode and microelectrodes, respectively. In the optimal reaction system, the degradation efficiencies of 40 mg L-1 atenolol, florfenicol, and diclofenac sodium could achieve up to 98.8%, 93.4%, and 85.5% in 120 min with 0.1 g L-1 CFO at current density of 25 mA cm-2. More importantly, in the flow-through reactor, the electrooxidation lasting for 150 min could reduce the COD of actual pharmaceutical wastewater from 432 to 88.6 mg L-1, with a lower energy consumption (25.67 kWh/m3). Meanwhile, the electrooxidation system maintained superior stability and environmental adaptability. DFT theory calculations revealed that the excellent performance of this electrooxidation system could be ascribed to the striking features of the reduced reaction energy barrier by single-atom Zr loading and abundant oxygen vacancies on the Zr/Ti4O7 surface. Moreover, the characterization and experimental results demonstrated that the CFO unique hierarchical structure and synergistic effect between electrodes were also the important factors that could improve the system performance. The findings shed light on the single-atom material design for boosting electrochemical oxidation performance.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Titânio/química , Atenolol , Diclofenaco , Poluentes Químicos da Água/química , Eletrodos , Microeletrodos , Oxirredução , Preparações Farmacêuticas
7.
Front Plant Sci ; 14: 1126254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521918

RESUMO

Nitrogen is essential for crop production. It is a critical macronutrient for plant growth and development. However, excessive application of nitrogen fertilizer is not only a waste of resources but also pollutes the environment. An effective approach to solving this problem is to breed rice varieties with high nitrogen use efficiency (NUE). In this study, we performed a genome-wide association study (GWAS) on 419 rice landraces using 208,993 single nucleotide polymorphisms (SNPs). With the mixed linear model (MLM) in the Tassel software, we identified 834 SNPs associated with root surface area (RSA), root length (RL), root branch number (RBN), root number (RN), plant dry weight (PDW), plant height (PH), root volume (RL), plant fresh weight (PFW), root fractal dimension (RFD), number of root nodes (NRN), and average root diameter (ARD), with a significant level of p < 2.39×10-7. In addition, we found 49 SNPs that were correlated with RL, RBN, RN, PDW, PH, PFW, RFD, and NRN using genome-wide efficient mixed-model association (GEMMA), with a significant level of p < 1×10-6. Additionally, the final results for eight traits associated with 193 significant SNPs by using multi-locus random-SNP-effect mixed linear model (mrMLM) model and 272 significant SNPs associated with 11 traits by using IIIVmrMLM. Within the linkage intervals of significantly associated SNP, we identified eight known related genes to NUE in rice, namely, OsAMT2;3, OsGS1, OsNR2, OsNPF7.4, OsPTR9, OsNRT1.1B, OsNRT2.3, and OsNRT2.2. According to the linkage disequilibrium (LD) decay value of this population, there were 75 candidate genes within the 150-kb regions upstream and downstream of the most significantly associated SNP (Chr5_29804690, Chr5_29956584, and Chr10_17540654). These candidate genes included 22 transposon genes, 25 expressed genes, and 28 putative functional genes. The expression levels of these candidate genes were measured by real-time quantitative PCR (RT-qPCR), and the expression levels of LOC_Os05g51700 and LOC_Os05g51710 in C347 were significantly lower than that in C117; the expression levels of LOC_Os05g51740, LOC_Os05g51780, LOC_Os05g51960, LOC_Os05g51970, and LOC_Os10g33210 were significantly higher in C347 than C117. Among them, LOC_Os10g33210 encodes a peptide transporter, and LOC_Os05g51690 encodes a CCT domain protein and responds to NUE in rice. This study identified new loci related to NUE in rice, providing new genetic resources for the molecular breeding of rice landraces with high NUE.

8.
J Hazard Mater ; 455: 131605, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37196440

RESUMO

Hexafluoropropylene oxide dimer acid (HFPO-DA) and its homologues, as perfluorinated ether alkyl substances with strong antioxidant properties, have rarely been reported by electrooxidation processes to achieve good results. Herein, we report the use of an oxygen defect stacking strategy to construct Zn-doped SnO2-Ti4O7 for the first time and enhance the electrochemical activity of Ti4O7. Compared with the original Ti4O7, the Zn-doped SnO2-Ti4O7 showed a 64.4% reduction in interfacial charge transfer resistance, a 17.5% increase in the cumulative rate of •OH generation, and an enhanced oxygen vacancy concentration. The Zn-doped SnO2-Ti4O7 anode exhibited high catalytic efficiency of 96.4% for HFPO-DA within 3.5 h at 40 mA/cm2. Hexafluoropropylene oxide trimer and tetramer acid exhibit more difficult degradation due to the protective effect of the -CF3 branched chain and the addition of the ether oxygen atom leading to a significant increase in the C-F bond dissociation energy. The degradation rates of 10 cyclic degradation experiments and the leaching concentrations of Zn and Sn after 22 electrolysis experiments demonstrated the good stability of the electrodes. In addition, the aqueous toxicity of HFPO-DA and its degradation products was evaluated. This study analyzed the electrooxidation process of HFPO-DA and its homologues for the first time, and provided some new insights.

9.
J Am Chem Soc ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029335

RESUMO

Element doping/substitution has been recognized as an effective strategy to enhance the structural stability of layered cathodes. However, abundant substitution studies not only lack a clear identification of the substitution sites in the material lattice, but the rigid interpretation of the transition metal (TM)-O covalent theory is also not sufficiently convincing, resulting in the doping/substitution proposals being dragged into design blindness. In this work, taking Li1.2Ni0.2Mn0.6O2 as a prototype, the intense correlation between the "disordered degree" (Li/Ni mixing) and interface-structure stability (e.g., TM-O environment, slab/lattice, and Li+ reversibility) is revealed. Specifically, the degree of disorder induced by the Mg/Ti substitution extends in the opposite direction, conducive to sharp differences in the stability of TM-O, Li+ diffusion, and anion redox reversibility, delivering fairly distinct electrochemical performance. Based on the established paradigm of systematic characterization/analysis, the "degree of disorder" has been shown to be a powerful indicator of material modification by element substitution/doping.

10.
Nano Lett ; 23(4): 1573-1581, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36724081

RESUMO

Metal-oxygen bonds significantly affect the oxygen reaction kinetics of metal oxide-based catalysts but still face the bottlenecks of limited cognition and insufficient regulation. Herein, we develop a unique strategy to accurately tailor metal-oxygen bond structure via amorphous/crystalline heterojunction realized by ion-exchange. Compared with pristine amorphous CoSnO3-y, iron ion-exchange induced amorphous/crystalline structure strengthens the Sn-O bond, weakens the Co-O bond strength, and introduces additional Fe-O bond, accompanied by abundant cobalt defects and optimal oxygen defects with larger pore structure and specific surface area. The optimization of metal-oxygen bond structure is dominated by the introduction of crystal structure and further promoted by the introduction of Fe-O bond and rich Co defect. Remarkably, the Fe doped amorphous/crystalline catalyst (Co1-xSnO3-y-Fe0.021-A/C) demonstrates excellent oxygen evolution reaction and oxygen reduction reaction activities with a smaller potential gap (ΔE = 0.687 V), and the Zn-air battery based with Co1-xSnO3-y-Fe0.021-A/C exhibits excellent output power density, cycle performance, and flexibility.

11.
Nanomaterials (Basel) ; 12(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36234419

RESUMO

Endohedral metallofullerenes (EMFs) are one type of intriguing metal/carbon hybrid molecule with the molecule configuration of sphere cavity-encapsulating metal ions/metal clusters due to their unique physicochemical properties and corresponding application in the fields of biological materials, single molecule magnet materials and energy conversion materials. Although the EMF family is growing, and versatile EMFs have been successfully synthesized and confirmed using crystal structures, some expected EMF members have not been observed using the conventional fullerene separation and purify strategy. These missing EMFs raise an interesting scientific issue as to whether this is due to the difficulty in separating them from the in situ formed carbon soot. Herein, we successfully captured a long-sought dysprosium-based EMF bearing a C2v(5)-C80 cage (Dy@C2v(5)-C80) in the form of Dy@C2v(5)-C80(CH2Ph)(Ph = -C6H5) from carbon soot containing versatile EMFs using simple benzyl radical functionalization and unambiguously confirmed the molecule structure using single crystal X-ray diffraction characterization. Meanwhile, the crystal structure of Dy@C2v(5)-C80(CH2Ph) showed that a single benzyl group was grafted onto the (5,6,6)-carbon, suggesting the open-shell electronic configuration of Dy@C2v(5)-C80. The theoretical calculations unveiled that the benzyl radical addition enables the modulation of the electronic configuration of Dy@C2v(5)-C80 and the corresponding stabilization of Dy@C2v(5)-C80 in conventional organic solvents. This facile stabilization strategy via benzyl radical addition exhibits the considerable capability to capture these missing EMFs, with the benefit of enriching the endohedral fullerene family.

12.
Nanomaterials (Basel) ; 12(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35889579

RESUMO

The high-regioselective synthesis of bisadducts based on low-symmetry C70 has been a challenging work due to the large amount of formed regioisomers, which require tedious separation procedures for isomeric purity and block their application in different fields. Herein, we successfully obtained a novel 1, 2, 3, 4-bis(triazolino)fullerene[C70] 2 with high regioselectivity by the rigid tether-directed regioselective synthesis strategy and the corresponding molecular structure was unambiguously confirmed by single-crystal X-ray crystallography characterization. The crystal data clearly show that the addition occurs at the domain of corannulene moiety at the end of ellipse C70 as well as the 1, 2, 3, 4-addition sites located at one hexagonal ring with a [6,6]-closed addition pattern. Furthermore, 2 was applied as an additive of perovskite layer to construct MAPbI3-based regular (n-i-p) perovskite solar cells, affording the power conversion efficiency (PCE) of 18.59%, which is a 7% enhancement relative to that of control devices without additive.

13.
ACS Appl Mater Interfaces ; 14(27): 30704-30713, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35763553

RESUMO

Nowadays, trace CH4 emitted from vehicle exhausts severely threaten the balance of the ecology system of our earth. Thereby, the development of active and stable catalysts capable of methane conversion under mild conditions is critical. Here, we present a convenient method to redisperse catalytically inert PdO nanoparticles (NPs) (>10 nm) into reactive PdOx nanoclusters (∼2 nm) anchored on a Ce-doped LaFeO3 parent. Isothermally activated in an N2 flow, the redispersed catalyst achieved a CH4 conversion of 90% at 400 °C, which is significantly higher than the fresh and H2- and O2-treated counterparts (625, 616, and 641 °C, respectively), indicating the importance of the gas atmosphere in the redispersion of PdO NPs. In addition, the comprehensive catalyst characterizations demonstrated that the isolated Ce ions in the perovskite lattice play an irreplaceable role in the redispersion of reactive sites and the reduction of the energy barrier for C-H scission. More importantly, the Ce additive helps to stabilize the PdOx species by reducing overoxidation, resulting in significant lifetime extension. Through a thorough understanding of structural manipulation, this study sheds light on the design of highly performing supported catalysts for methane oxidation.

14.
ChemSusChem ; 15(6): e202102729, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35102710

RESUMO

The extensive emission of CO2 results in critical environmental issues, such as global warming. Photocatalytic CO2 conversion is a meaningful route to convert CO2 into useful chemicals. However, the highly selective reduction of CO2 with the avoidance of hydrogen evolution is still challenging. Herein, the photocatalytic reduction CO2 to synthesis gas (syngas) was achieved on a metal Ag socketed perovskite LaFeO3 (LFO) catalytic interface prepared by an in-situ exsolution method. The conduction band of Ag-exsolved LFO is more negative than LFO, benefiting efficient CO2 reduction. By tuning the dopant Ag cation in the lattice to nanoparticles pinned on the surface, the CO formation rate was improved around five-fold from 0.51 to 2.41 µmol g-1 h-1 . Meanwhile, the H2 /CO molar ratio also showed strong dependence on the modality of Ag at the metal-perovskite interface. The design offers a promising pathway for transforming CO2 to valuable chemicals based on efficient photocatalysts design.

15.
Angew Chem Int Ed Engl ; 61(11): e202116832, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-34986281

RESUMO

Efficient and selective photocatalytic CO2 reduction was obtained within a hybrid system that is formed in situ via a Schiff base condensation between a molecular iron quaterpyridine complex bearing an aldehyde function and carbon nitride. Irradiation (blue LED) of an CH3 CN solution containing 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH), triethylamine (TEA), Feqpy-BA (qpy-BA=4-([2,2':6',2'':6'',2'''-quaterpyridin]-4-yl)benzaldehyde) and C3 N4 resulted in CO evolution with a turnover number of 2554 and 95 % selectivity. This hybrid catalytic system unlocks covalent linkage of molecular catalysts with semiconductor photosensitizers via Schiff base reaction for high-efficiency photocatalytic reduction of CO2 , opening a pathway for diverse photocatalysis.

16.
Front Plant Sci ; 13: 1095602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36874914

RESUMO

Brown planthopper (BPH) is the most devastating pest of rice in Asia, causing substantial yield losses and has become a challenging task to be controlled under field conditions. Although extensive measures have been taken over the past decades, which resulted in the evolution of new resistant BPH strains. Therefore, besides other possible approaches, equipping host plants with resistant genes is the most effective and environment-friendly technique for BPH control. Here, we systematically analyzed transcriptome changes in the susceptible rice variety Kangwenqingzhan (KW) and the resistant near-isogenic line (NIL) KW-Bph36-NIL, through RNA-seq, depicting the differential expression profiles of mRNAs and long non-coding RNAs (lncRNAs) in rice before and after BPH feeding. We observed a proportion of genes (1.48%) and (2.74%) were altered in KW and NIL, respectively, indicating different responses of rice strains against BPH feeding. Nevertheless, we characterized 384 differentially expressed long non-coding RNAs (DELs) that can be impacted by the two strains by alternatively changing the expression patterns of the respective coding genes, suggesting their certain involvement in response to BPH feeding. In BPH invasion, KW and NIL responded differently by modifying the synthesis, storage, and transformation of intracellular substances, adjusting the nutrient accumulation and utilization inside and outside the cells. In addition, NIL expressed stronger resistance by acutely up-regulating genes and other transcription factors related to stress resistance and plant immunity. Altogether, our study elaborates valuable insights into the genome-wide DEGs and DELs expression profiles of rice under BPH invasion by high throughput sequencing and further suggests that NILs can be utilized in BPH resistance breeding programs in developing high-resistance rice lines.

17.
Plant Methods ; 17(1): 121, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34844633

RESUMO

BACKGROUND: The rice gall midge (RGM, Orseolia oryzae, Wood-Mason), an important stem-feeding pest worldwide, has caused serious production losses over the past decades. Rice production practices indicate that the most reliable method for managing RGM is the deployment of cultivars that incorporate host resistance. However, the conventional phenotypic screening method of rice resistance to RGM suggested by the International Rice Research Institute (IRRI) has been used for approximately 30 years, and only 12 rice varieties/lines (including controls) can be evaluated in one tray. It is not suitable for high-throughput phenotyping of rice germplasm. Moreover, a suitable method to prepare samples for molecular biological studies of rice resistance against RGM is imperative with the rapid development of modern molecular techniques. RESULTS: The proper density of seedlings/RGM was determined for four seeding arrangements. A high-throughput phenotyping method (HTPM) for 60 lines/varieties infested with 36 female RGM adults in one tray, as described by method 4-3 (seeded 60 lines/varieties), was developed and verified using mutant screening. Furthermore, one RGM resistance gene flanked by markers 12RM28346 and 12RM28739 on chromosome 12 was simultaneously detected using method 2-2 (seeded 30 lines/varieties in one tray) treated with 24 RGM and analyzed using conventional and simplified grading systems. Genetic analysis of the RGM resistance gene was confirmed using a method identical to that suggested by IRRI. Finally, one bucket with 24 seedlings treated with at least five female RGM adults was efficacious and could offer adequate samples for insect development observation or molecular biological studies. CONCLUSION: A highly efficient and reliable procedure for evaluation of resistance in rice to RGM was developed and improved, and was verified through mutant screening, gene mapping, genetic analysis, and insect growth and development observations.

18.
J Integr Plant Biol ; 63(10): 1695-1711, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34302720

RESUMO

Interactions and co-evolution between plants and herbivorous insects are critically important in agriculture. Brown planthopper (BPH) is the most severe insect of rice, and the biotypes adapt to feed on different rice genotypes. Here, we present genomics analyses on 1,520 global rice germplasms for resistance to three BPH biotypes. Genome-wide association studies identified 3,502 single nucleotide polymorphisms (SNPs) and 59 loci associated with BPH resistance in rice. We cloned a previously unidentified gene Bph37 that confers resistance to BPH. The associated loci showed high nucleotide diversity. Genome-wide scans for trans-species polymorphisms revealed ancient balancing selection at the loci. The secondarily evolved insect biotypes II and III exhibited significantly higher virulence and overcame more rice varieties than the primary biotype I. In response, more SNPs and loci evolved in rice for resistance to biotypes II and III. Notably, three exceptional large regions with high SNP density and resistance-associated loci on chromosomes 4 and 6 appear distinct between the resistant and susceptible rice varieties. Surprisingly, these regions in resistant rice might have been retained from wild species Oryza nivara. Our findings expand the understanding of long-term interactions between rice and BPH and provide resistance genes and germplasm resources for breeding durable BPH-resistant rice varieties.


Assuntos
Evolução Biológica , Hemípteros , Herbivoria , Oryza/genética , Seleção Genética , Animais , Cromossomos de Plantas , Pool Gênico , Especificidade da Espécie
19.
Polymers (Basel) ; 12(7)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605206

RESUMO

In this study, a benzodithiophene (BDT)-based donor (D)-acceptor (A) polymer containing carbazole segment in the side-chain was designed and synthesized and the thermoelectric composites with 50 wt % of single walled carbon nanotubes (SWCNTs) were prepared via ultrasonication method. Strong interfacial interactions existed in both of the composites before and after immersing into the 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) solution as confirmed by UV-Vis-NIR, Raman, XRD and SEM characterizations. After doping the composites by F4TCNQ, the electrical conductivity of the composites increased from 120.32 S cm-1 to 1044.92 S cm-1 in the room temperature. With increasing the temperature, the electrical conductivities and Seebeck coefficients of the undoped composites both decreased significantly for the composites; the power factor at 475 K was only 6.8 µW m-1 K-2, which was about nine times smaller than the power factor at room temperature (55.9 µW m-1 K-2). In the case of doped composites, although the electrical conductivity was deceased from 1044.9 S cm-1 to 504.17 S cm-1, the Seebeck coefficient increased from 23.76 µV K-1 to 35.69 µW m-1 K-2, therefore, the power factors of the doped composites were almost no change with heating the composite films.

20.
Theor Appl Genet ; 133(6): 2021-2033, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32166371

RESUMO

KEY MESSAGE: The rice gall midge resistance gene, Gm5, confers remarkable antibiosis and is located in the same region on chromosome 12 in three different rice varieties. Fine mapping narrowed this region to a 49-kb segment and identified two candidate genes showing remarkable response to GM infestation. The Asian rice gall midge (GM; Orseolia oryzae; Diptera: Cecidomyiidae) invades rice shoots and forms galls, adversely affecting plant growth and yield production. Thus, the development of resistant varieties through the identification, mapping, and application of GM resistance genes is considered the most efficient strategy for managing this insect. Here, a GM resistance survey of F2 populations derived from intercrosses between resistant rice varieties 'ARC5984,' '570011,' and 'ARC5833' indicated that the resistance gene Gm5 was located on the same chromosomal region in the three varieties. For the initial mapping, three independent F2 mapping populations were developed for the three resistant varieties, and the Gm5 gene was consistently mapped to the same chromosomal region near marker 12M22.6. Fine mapping, which was conducted using the BC1F2 and BC2F2 populations derived from the 9311/ARC5984 cross, narrowed the Gm5 gene region to a 49-kb segment flanked by the markers Z57 and Z64. In the final mapped region, we detected 10 candidate genes, of which six were analyzed for their relative expression. Consequently, two of these genes, Os12g36830 and Os12g36880, showed significantly higher expression in GM-resistant plants than in GM-susceptible plants at 24 and 72 h after GM infestation. Finally, the PCR amplification of markers 12M22.5 and 12M22.6 yielded clear single bands, and these markers were effectively applied for the marker-assisted selection (MAS) of the Gm5 gene. With the developed MAS markers, the fine mapping of this resistance gene will facilitate its map-based cloning and incorporation into insect-resistant rice varieties through breeding.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Nematóceros , Oryza/genética , Doenças das Plantas/genética , Animais , Mapeamento Cromossômico , Genótipo , Fenótipo , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA